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Abstract There are two results in the literature that seem closely related: Padman-
abhan’s interpretation of field equations near a null surface as a thermodynamic
identity and Jacobson’s derivation of Einstein equations from the Clausius relation
of thermodynamics. I compare and contrast these two results in the framework of
Gaussian null coordinates near a null surface.

Prologue

A STORY .....
In the court of Akbar Badshah ( ‘Badshah’, loosely translated, means ‘emperor’), there

was a musician called Tansen. He used to enthrall everyone in Akbar’s Court with his superb
performances. Once, after such a rendition, Akbar started praising him sky-high and said,
“There can be no-one else in this world who can sing so well”. Tansen disagreed, saying he
knows of a hermit who lives in the jungle on the banks of Yamuna river who is far superior
and that Tansen himself has learnt music from him for sometime. Akbar, who could not
believe this, wanted to listen to this hermit in order to judge for himself. Since the hermit
did not want any publicity, it was decided that Tansen will take Akbar near the place where
the hermit lived and they should listen to his music without creating any disturbance.

They set out one day and reached the jungle near the river Yamuna, where, at a distance,
they saw the hermit’s hut. As the sun was setting on Yamuna, with all Nature at peace, the
hermit came out his hut, sat on a rock facing the river and started singing. Akbar could
immediately see that this was music of a completely different class which Tansen could
never produce.

On their way back, Akbar queried, “Tansen, you say he taught you music; clearly, he
has held back some techniques from you”.

“No”, said Tansen. “I know all the technical aspects of music he does.”
“But, Tansen, then how do you account for such difference in quality ?”
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“It is simple. He sings for Yamuna while I sing for Badshah”.

Source- Paddy’s website
My first encounter- 2nd year Undergraduate

1 Introduction

I shall refer to Prof. Padmanabhan as Paddy, as he is popularly known, in this arti-
cle1.

Emergent gravity paradigm has been Paddy’s main research interest for the past
decade [19, 21, 23]. The main motivation for this program is the observation that
quantities that look and feel very much like thermodynamic quantities keep popping
up in gravity all the time. Hence, it natural to ask “if gravity is the thermodynamic
limit of the statistical mechanics of certain microscopic degrees of freedom (‘atoms
of space’) [21]”. One of the main results of this research program is the demonstra-
tion that Einstein’s equations when projected on a null surface can be interpreted
as a thermodynamic identity [18, 12, 11, 2, 1, 10]. As Paddy states, “If gravity is
thermodynamic in nature, then the gravitational field equations must be expressible
in a thermodynamic language [21].” The above results are the concrete realizations
of this expectation. There is another result in the literature that smells very simi-
lar. Twenty years back, Jacobson showed that enforcing a thermodynamic identity
on a local causal horizon is equivalent to enforcing Einstein’s equations [8]. This
work has also been followed up [3, 5, 7, 15, 4]. The question is often asked: What
is the relation between these two approaches? In fact, this question was posed to me
during my PhD defence! It is the purpose of this article to answer this question by
comparing and contrasting the two results. Let me state at the outset that the two
results are not the same result interpreted in two different ways, but arise from two
different components of the Einstein equations at the null surface [2, 1]. In particu-
lar, the T δS terms that appear in the two results are not the same. In Jacobson’s case,
the change in entropy is as you move along the null geodesics on the null surface. In
Paddy’s case, the change is as you move along the null geodesics off the null surface
(along the auxiliary null vector).

I shall confine myself to Einstein’s theory, and to four dimensions, in this article. For
the comparison of the two approaches, I shall use Gaussian null coordinates (GNC)
near a null surface [16, 17, 24].

The conventions used in this article are as follows: We use the metric signature
(−,+,+,+). The fundamental constants G, h̄ and c have been set to unity. The
Latin indices, a,b, . . ., run over all space-time indices, and are hence summed over

1 This nickname ensured that PhD work was never far from my mind even while enjoying holidays
in my home-state of Kerala, because of all the paddy fields around.
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four values. Greek indices, α,β , . . ., are used when we specialize to indices corre-
sponding to a codimension-1 surface, i.e a 3−surface, and are summed over three
values. Upper case Latin symbols, A,B, . . ., are used for indices corresponding to
two-dimensional hypersurfaces, leading to sums going over two values.

2 Comparing the Two Results in GNC

In order to compare Jacobson’s and Paddy’s approaches, we introduce a coordinate
system adapted to a null surface. This coordinate system, named the Gaussian null
coordinates (GNC), is quite general like the Gaussian normal coordinates [28] near
a non-null surface. Hence, as far as we know, we are not imposing any restrictions
on the null surfaces or the spacetimes by restricting to GNC. Further, the quantities
that we will be referring to will be physical quantities that do not depend on the
choice of coordinates. So, our results derived in the framework of GNC are general
results valid around any null surface. The discussion of both Paddy’s thermody-
namic identity and the Raychaudhuri equation on the null surface which was used
by Jacobson has been provided for the GNC metric in [2, 1]. For the Raychaudhuri
equation, we shall take a slightly different route which makes it easier to compare
with Jacobson’s results while the results for Paddy’s thermodynamic identity will
be borrowed from the above two papers.

2.1 Gaussian Null Coordinates (GNC)

This coordinate system was introduced. as far as I know, by Moncreif and Isenberg
[16]. The construction of these coordinates are also discussed in [6, 26, 17, 24]. We
shall briefly detail the construction and note the essential properties of this coordi-
nate system below.

In the case of Gaussian normal coordinates near a non-null surface, the construction
proceeds by using geodesics normal to the surface. This won’t work for the null
case, since geodesics with tangent vectors along the surface normal, say `a, actually
lie on the null surface. But this offers a unique direction on the null surface and
the coordinate system on the surface can be set up adapted to this direction. To
do this, choose any spacelike 2-surface on the null surface and assign coordinates
(x1,x2) on that surface. Then, carry these coordinates along the null generators of
the surface with some parameter u, not necessarily affine (see Sect 4 for the case
of affine parametrization), forming the third coordinate on the surface. To construct
the coordinates in the region near the null surface, we introduce an auxiliary null
vector ka, satisfying `aka = −1. Then, we carry the coordinates on the null surface
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along the null geodesics in the direction of ka and take the fourth coordinate as
an affine parameter −r along these null geodesics, with r = 0 on the null surface.
(Here, −r has been used instead of r just to match with conventions we have been
following.)

Then, the line element in GNC coordinates takes the following form:

ds2 =−2rαdu2 +2dudr−2rβAdudxA +qABdxAdxB (1)

This line element contains six independent parameters α , βA and qAB, all dependent
on all the coordinates

(
u,r,xA

)
. The metric on the two-surface (i.e. u = constant

and r = constant) is represented by qAB. The surface r = 0 is the fiducial null sur-
face while other r =constant surfaces are not null in general. There are only 6 free
functions in the metric, as can be expected when we use the 4 coordinate choices to
restrict 10 components of the metric for a general spacetime.

We use the symbol sa for the normal ∂ar to the r = constant surfaces. This will
be a null vector on the r = 0 null surface. In fact, sa will go to the null vector `a,
defined earlier, on the null surface. We introduce an auxiliary null vector ka such that
kasa =−1 everywhere. The components of these quantities in (u,r,xA) coordinates
are as follows:

sa = (0,1,0,0) , sa =
(
1,2rα + r2

β
2,rβ

A) (2a)
ka = (−1,0,0,0) , ka = (0,−1,0,0) (2b)

On the null surface, we introduce two spacelike vectors eA = (e1,e2) which satisfy
`aea

A = kaea
A = 0. The four vectors

(`a,ka,ea
1, ,e

a
2) (3)

form a basis near the null surface. Next we introduce the vector ξ a:

ξ =
∂

∂u
= (1,0,0,0) . (4)

which goes to `a on the null surface. This vector will be called the time development
vector since it corresponds to the standard time direction (which is also a Killing
direction) when Schwarzschild and Rindler metrics are written in GNC form (see
Appendix B in [2]). Thus, we may take it as the time corresponding to the local
Rindler observers in the local Rindler frame near the null surface. We have ξ

2 =
−2rα . This is zero on the null surface, as expected since ξ a goes to `a.

The vector ka = −∂/∂ r is tangent to the ingoing null geodesic (ingoing since it
points in the direction of decreasing r), which is affinely parametrized with affine
parameter r. We denote λH to be the value of the affine parameter on the null surface.
In the remaining discussions, we will work with λ defined through the following
relation: r = λ −λH .
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2.2 The Components of Fa = Ga
bξ b

In order to derive the thermodynamic identity, we focus on the vector Fa = Ga
bξ b.

One way of seeing where this component comes from is to think in terms of the
Noether current for gravity [2, 1] or in terms of the recently introduced gravitational
momentum [22, 1]. Another way of thinking about this is to note that ξ a goes to the
null normal `a on the null surface and hence the various components of matter fluxes
associated with the null surface are given by the various components of Ga

bξ b. We
shall take projections of Ga

bξ b along `a and ka and show that these are the compo-
nents used by Jacobson and Paddy respectively. The projection to the space spanned
by ea

A (see Eq. (3)) is obtained using the projector qa
b. This gives rise to an equation

of the form of the Navier-Stokes equation [1], but we shall not be discussing that
result here.

2.2.1 Jacobson’s Result from Ga
bξ b`a on the Null Surface

Jacobson’s derivation of the Einstein equation proceeds by assuming the Clausius
relation δQ = T δS, where the heat change δQ is taken as the matter flux across
a null surface near a local equilibrium, T is the acceleration of an observer who
perceives the local patch of the null surface as a local Rindler horizon and δS is the
change in entropy which is proportional to the area change.

Consider the component

Fa`a = Ga
bξ

a`b = Gab`a`b = Rab`a`b = 8πT ab`a`b . (5)

This projection actually picks up the component of Fa along ka if you expand Fa =
A`a +Bka +CAea

A in the basis in Eq. (3). In GNC coordinates,

Fa`a = Rab`a`b = Rrr . (6)

Evaluating this component of the Ricci tensor at the null surface r = 0, we ob-
tain

Rrr =
α
√

q
∂u
√

q−∂
2
u ln
√

q+
1
4

∂uqAB∂uqAB

= α∂u ln
√

q−∂
2
u ln
√

q− 1
4

qACqBD
∂uqAB∂uqCD, (7)

where ∂u denotes the operator ∂/∂u. The induced metric on the null surface is given
by qab = gab+`akb+ka`b. Using qab, we can construct the second fundamental form
on the null surface:

Θab = qm
a qn

b∇m`n . (8)
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Taking the trace of the second fundamental form, we get the expansion:

Θ = gab
Θab = qab

Θab = qab
∇a`b . (9)

The second fundamental form and the expansion for the null surface at r = 0 in
GNC are respectively

Θab =
∂uqAB

2
; Θ =

qAB∂uqAB

2
= ∂u ln

√
q (10)

Thus, we can write

Fa`a = Rrr = αΘ −∂uΘ −ΘABΘ
AB (11)

= αΘ − 1
√

q
∂u (
√

qΘ)+Θ
2−ΘABΘ

AB (12)

= αΘ − 1
√

q
∂u (
√

qΘ)−D, (13)

where D = ΘABΘ AB−Θ 2 is identified as the dissipation corresponding to the null
surface. This identification comes from the component qa

bFb of Fa which can be
written in a form similar to Navier-Stokes equations of fluid dynamics [1].

In order to compare with Jacobson’s result, consider Eq. (11). We can write it in the
form

∂uΘ = αΘ −ΘABΘ
AB−Rab`

a`b (14)

Once we decompose Θab into its trace (expansion Θ ), traceless symmetric part
(shear σab) and antisymmetric part (rotation ωab), this reduces to the form of the
null Raychaudhuri equation [25] but with the first term being extra. This term ap-
pears because the null Raychaudhuri equation is usually defined with an affinely
parametrized geodesic while the parameter u is not an affine parameter. If we derive
the null Raychaudhuri equation without assuming affine parametrization, we can
see that it is consistent with Eq. (14) [1].

But we shall follow the other route by keeping affine parametrization. Then, u has to
be taken as an affine parameter in the construction of GNC. This would lead to the
constraint that α = 0 on the null surface r = 0 (see Sect 4). Enforcing this, Eq. (14)
becomes

∂uΘ =−ΘABΘ
AB−Rab`

a`b (15)

This is the usual affinely parametrized null Raychaudhuri equation. In Jacobson’s
case, the ΘABΘ AB term is put to zero as a condition for local equilibrium. More
explicitly, the rotation is zero since the null geodesics are taken to form the local
horizon, while the expansion and shear are set to zero as a condition for equilibrium.
If there is a given null surface with non-zero shear or expansion at a point, then these
cannot be set to zero by choice of coordinates as they are geometrical quantities. But
what is true is that given any point in spacetime and any null direction through that
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point, there is always a null surface through that point tangential to the null direction
such that the expansion and shear are zero. To see this in GNC coordinates, first note
that Θab = ∂uqab. At the point P at which we want to construct the GNC coordinates
on a null surface at local equilibrium, we first erect a local inertial frame (t,x,y,z).
The x-axis is aligned so that the chosen null direction lies in the x− t plane. If we
now do a Rindler transformation, the metric can be put in the GNC form with the
null surface coinciding with the local Rindler horizon with the chosen null direction
along one of its generators. Since the transverse 2-metric is not touched in these
transformations, they remain flat and we shall have ∂uqAB = 0 valid in the local
inertial frame. Thus, given any point in spacetime and a null direction through it, one
can always choose a null surface through the point tangential to the null direction
such that Θ AB = 0; in other words, such that the shear, expansion and rotation are
zero.

With such a choice of a null surface, Eq. (15) becomes

∂uΘ =−Rab`
a`b , (16)

which is precisely the form of the Raychaudhuri equation Jacobson integrated to get
the geometric part needed to obtain the Einstein equation. Following Jacobson, we
first integrate the above equation with the initial condition that Θ = 0 at the point P
at u = 0 to obtain

Θ =−Rab`
a`bu . (17)

Our convention is that u is increasing to the future. Jacobson’s set-up involves imag-
ining that the congruence was expanding a little to the past of P and then there was
a matter flux through the congruence that provided just enough gravitational lens-
ing to bring the expansion to zero at P. We shall integrate from the point P0 with
affine parameter value −ui to the past of P. The change in area of an infinitesimal
cross-section around the chosen null generator is then given by

δA =
∫ 0

−ui

Θ
√

qdud2x =−
∫ 0

−ui

Rab`
a`bu
√

qdud2x =
∫ ui

0
Rab`

a`b
λ
√

qdλd2x .

(18)
In the last step, we have changed the integration variable from u to λ =−u. Note that
the change in area is positive if Rab`

a`b > 0, which is the condition that you obtain
from the Einstein equations if the matter part satisfies the null energy condition.
Finally, we assume that the entropy change that is to be associated with the null
surface is proportional to its area with some proportionality constant η :

δS = ηδA = η

∫ ui

0
Rab`

a`b
λ
√

qdλd2x . (19)

Next, we need an accelerating observer for whom the patch of null surface acts as
a local Rindler horizon. Since the proper distance of an accelerated observer from
the Rindler horizon is inversely proportional to the acceleration, we shall consider
a highly accelerated observer so that the observer is very close to the horizon and
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we can be sure that our construction of the local inertial frame and local Rindler
frame are valid. In fact, we may go to the light-like limit of the infinitely accelerated
observer.

In order to find the suitable observer, we shall write the GNC form with affine
parametrization for the Rindler metric. In flat Milnkowski space with coordinates
(t,x,y,z), the observers moving along the integral curves of the generators of boosts
along the x-direction are the ones who will observe the future part of the x = t null
plane as a Rindler horizon. These are observers moving along the integral curves of
the vector (x, t,0,0). We shall try to figure out which observers in our picture can be
taken to correspond to these observers. First, we shall write down the metric in the
following Rindler form [27]:

ds2 =−2κldT 2 +
dl2

2κl
+dy2 +dz2 . (20)

This form is obtained from the Minkowski metric by the coordinate transformation
x =

√
2l/κ coshκt and t =

√
2l/κ sinhκt. Defining a new coordinate U by

U = T +
∫ dl

2κl
; dT = dU− dl

2κl
, (21)

we transform to
ds2 =−2κldU2 +2dUdl +dy2 +dz2 . (22)

We have got the metric in GNC form, but U is not an affine parameter. Looking at
how the vector ∂/∂U should be scaled to make it affine, we can figure out that the
transformation to coordinates

λ =
eαU

α
; s =

r
αλ

(23)

will do. This brings the metric in the form

ds2 = 2dλds+dy2 +dz2 . (24)

I am happy to say that we have rediscovered the flat metric in the double null form in
a pleasantly roundabout way. This is now of the form of affinely parametrized GNC
in Eq. (39). The observer can then found to be the one moving along the integral
curves of the vector (λ ,−s,0).

Taking a cue from this, we shall look at the observers moving along the integral
curves of (u,−r,0,0) in the affine GNC metric of Eq. (39). So we anoint

χ
a = (u,−r,0,0), (25)

as the vector representing our observers. The normalized vector χ̄a will be the four-
velocities. Note that, on the null surface r = 0, we have
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χ
a = u

∂

∂u
= u`a . (26)

Writing χ̄a = Nχa, the acceleration of the trajectories will be given by N and the
corresponding acceleration temperature will be

T =
N
2π

(27)

near the null surface.

The momentum four-vector associated to the matter flux by one such observer will
be NT abχb. The energy of the matter flux across the null surface as observed by this
observer is the heat change

δQ =
∫ 0

−ui

NT ab
χb`a
√

qdud2x = N
∫ 0

−ui

uT ab`b`a
√

qdud2x, (28)

where we have used Eq. (26). Changing variables to λ = −u as in Eq. (19), we
obtain

δQ = N
∫ ui

0
λT ab`b`a

√
qdλd2x . (29)

Now we have all the ingredients in place. Demanding δQ= T δS and using Eq. (19),
Eq. (27) and Eq. (29), we obtain the condition

Rab`
a`b =−2π

η
Tab`

a`b . (30)

This is almost right, except for a pesky minus sign. If we obtain Einstein equation
from the above relation, η will be set as negative and this would mean that area
increase is entropy decrease from Eq. (19). We have been careful with signs around
Eq. (19), so let us look back at Eq. (29). If we enforce the null energy condition
T ab`a`b > 0, the heat turns out to be negative. Since we require a positive heat
change to correspond to the positive change in entropy, we redefine

δQ =−N
∫ ui

0
λT ab`b`a

√
qdλd2x . (31)

This is in fact the correct definition. The original source of the extra minus sign
was the fact that χa = u∂/∂u is past-directed in our region of integration since u is
negative, and hence −χa should have been used.

Thus, we obtain the equation

Rab`
a`b =

2π

η
Tab`

a`b . (32)

From here, we can follow Jacobson [8] to obtain the full Einstein equations.
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2.2.2 Paddy’s Result from Ga
bξ bka on the Null Surface

Next, we shall discuss Paddy’s approach where a certain component of the Einstein
equations near a horizon takes a form similar to the first law of thermodynamics
[18, 12, 11, 2, 1, 10]. In Paddy’s approach the Einstein equations are not derived,
but it is shown that a certain component of Einstein equations projected on a null
surface has a thermodynamic interpretation. Note that this difference is superficial
since even in Paddy’s case one can derive the Einstein equations by starting from the
thermodynamic identity backward and demanding that it holds for all null surfaces
and even in Jacobson’s case one can prove the Clausius relation starting from the
Einstein equations.

To obtain Paddy’s result, we look at another component of Fa. We shall take its
projection along the auxiliary null vector ka. Then, we obtain

Faka = Ga
bξ

bka = 8πT a
b ξ

bka . (33)

In this case, the work has already been done in [2, 1] and hence we just borrow the
results. Working in GNC, the component Ga

bξ bka = 8πT a
b ξ bka is interpreted and

written in the form
F̄δ λ̄ = T δ

λ̄
S−δ

λ̄
E . (34)

Here, F is the integral of T a
b ξ bka over the null surface, interpreted as the force acting

on the patch of the null surface and δλ = δ r is a small shift of the horizon in the
direction of ka. This is a small shift in the r-direction in GNC coordinates. Note that
r is also an affine parameter.

On the RHS, T = α/2π is the acceleration temperature corresponding to the ob-
servers moving along the integral curves of ξ a near r = 0 with the assumption that
α is slowly varying in time. More precisely, we assume ∂uα � α2. The change in
entropy δS is just the change in the 2-surface area, with appropriate factors, when
the surface is shifted outward. The change in area is the integral of ∂r

√
qδ r inte-

grated over the patch of the null surface.

Finally, we have the change in energy. The quantity E here is given by the expres-
sion

E =
1

16π

∫
dr
∫

d2x R(2)− 1
8π

∫
d2x∂u

√
q− 1

16π

∫
dr
∫

d2x
√

q
{

1
2

βAβ
A
}

.

(35)
Here, one term has been put to zero under the assumption that the u-constant, r-
constant 2-surface on the null surface is closed. The identification of this quantity
as the energy is due to the fact that it is able to reproduce the known expressions
of energy in several known cases. For example, this reduces to the mass for the
Schwarzschild metric.

With these identifications, Eq. (34) is of the form of the first law of thermodynam-
ics.
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3 Discussion

At first sight, both Paddy’s results and Jacobson’s results look very similar. Jacob-
son’s result says that one can derive Einstein equations from δQ = T δS imposed
on local Rindler horizons, which can be constructed along any null direction around
any point in spacetime. Paddy’s result is that a certain projection of the Einstein
equations on a null surface can be interpreted to be of the form δE = T δS−Fδλ .
In thermodynamics, these relation will be called the Clausius relation and the first
law of thermodynamics. In fact, one may be tempted to put both together and obtain
the equation δE = δQ−Fδλ . But closer scrutiny reveals that things are not that
simple.

The apparent point of conflict is that both δQ in Jacobson’s case and δE in Paddy’s
case are components of matter energy-momentum flux across the horizon. Since
identification of which component is which physically is a little complicated near
the null surface, I am sure many people must have thought that these are the same
components. Once this is assumed, there appears to be a discrepancy with Paddy
having an extra term compared to Jacobson’s starting point, since the T δS terms
seem unambiguous.

I hope I have shed some light on this issue in this article, building up on work
previously done in [2, 1]. Working in the framework of Gaussian null coordinates,
one can see that

1. Paddy’s result and Jacobson’s result come from two different components of the
Einstein tensor, and equivalently of the matter energy-momentum tensor, near
the null surface.

2. The entropy change in the T δS term is not the same in the two cases. In Paddy’s
case, the change is from the change in area along the null geodesics off the null
surface, while the change in Jacobson’s case is along the null geodesics on the
null surface.

Another paper which compared the two approaches is [9]. It is not clear how the
results there compare to the results stated here. The discussion in [9] had the general
static metric introduced in [13, 14] as the reference metric although the final results
are stated in tensorial form. It will be interesting to see how these results look when
translated to Gaussian null coordinates.

Epilogue

Theoretical physics is fun. Most of us indulge in it for the same reason a painter paints or
a dancer dances...Occasionally, there are additional benefits like fame and glory and even
practical uses; but most good theoretical physicists will agree that these are not the primary
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reasons why they are doing it. The fun in figuring out the solutions to Nature’s brain teasers
is a reward in itself.

Source- Paddy’s book [20]
My first encounter- After PhD

Acknowlegements

I am happy to dedicate this article to Paddy, who I was fortunate to have as my PhD
supervisor, on the occasion of his 60th birthday as a tribute to his never flagging en-
thusiasm for anything under the sun, his ocean-deep knowledge and his unmatched
tenacity. I also acknowledge discussions with Sumanta Chakraborty, Bibhas Majhi
and Dawood Kothawala on related topics in the past.

Appendices

4 Gaussian Null Coordinates with Affine Parametrization

The line element in GNC coordinates was given in Eq. (1) as

ds2 =−2rαdu2 +2dudr−2rβAdudxA +qABdxAdxB , (36)

Here, α , βA and qAB are arbitrary functions. This was derived by taking u to be an
arbitrary parameter along the null geodesics on the null surface r = 0 [24]. But sup-
pose we now impose the condition that u is an affine parameter on the null surface.
This is equivalent to the condition that ξ a∇aξ b = 0 at r = 0 for ξ a = ∂/∂u. For the
above line element, we have

ξ
a
∇aξ

b = Γ
b

acξ
a
ξ

c = Γ
b

uu . (37)

Equating this to zero, we get the following conditions at r = 0:

∂uguu = 0; ∂rguu = 0; ∂Aguu = 0 . (38)

Since guu = −2rα , the first and third conditions are automatically satisfied, while
the second condition implies α = 0 at r = 0. This can be enforced by putting α = rγ

where γ is an arbitrary function. Thus, the form of the GNC line element with affine
parametrization is

ds2 =−2r2
γdu2 +2dudr−2rβAdudxA +qABdxAdxB . (39)
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Note that this form was indicated in [17] where the Ruu component was compared to
the Raychaudhuri equation to claim that α has to be proportional to r. It is not clear
from the text whether the author realized that this is necessary only if u is taken to
be affine. But since affine parametrization can always be taken, it is true that the
GNC metric can always be written in the above form.
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